DNA-based nanostructures for molecular sensing.
نویسندگان
چکیده
Nanotechnology has opened up new avenues towards ultra-sensitive, highly selective detection of biological molecules and toxic agents, as well as for therapeutic targeting and screening. Though the goals may seem singular, there is no universal method to identify or detect a molecular target. Each system is application-specific and must not only identify the target, but also transduce this interaction into a meaningful signal rapidly, reliably, and inexpensively. This review focuses on the current capabilities and future directions of DNA-based nanostructures in sensing and detection.
منابع مشابه
Mechanical design of DNA nanostructures.
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This rev...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملDNA self-assembly for nanomedicine.
Self-assembling DNA nanostructures based on rationally designed DNA branch junction molecules has recently led to the construction of patterned supramolecular structures with increased complexities. An intrinsic value of DNA tiles and patterns lies in their utility as molecular pegboard for deterministic positioning of molecules or particles with accurate distance and architectural control. Thi...
متن کاملOne-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been ...
متن کاملSelf-assembled DNA Nanostructures and DNA Devices
This chapter overviews the past and current state of the emerging research area in the field of nanoscience that make use of synthetic DNA to self-assemble into DNA nanostructures and to make operational molecular-scale devices. Recently there have been a series of quite astonishing experimental results which have taken the technology from a state of intriguing possibilities into demonstrated c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2010